Notes

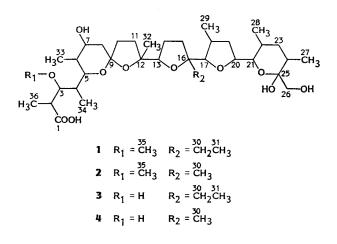
3-O-DEMETHYLMONENSINS A AND B PRODUCED BY STREPTOMYCES CINNAMONENSIS

Stanislav Pospíšil, Petr Sedmera, Jindřich Vokoun and Zdenko Vaněk

Institute of Microbiology, Czechoslovak Academy of Sciences, CS-142 20 Prague 4, Czechoslovakia

MILOŠ BUDĚŠÍNSKÝ

Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, CS-166 10 Prague 6, Czechoslovakia


(Received for publication October 11, 1986)

Monensin A derivatives lacking the C-3 methoxyl group have been described so far as the products of animal metabolism¹⁾. We report here their occurrence as co-metabolites of monensins A (1) and B (2) in *Streptomyces cinnamonensis*. They exhibit a different color reaction with vanillin reagent²⁾ (yellow-orange instead of red).

The strain *Streptomyces cinnamonensis* LO-63 (from our collection) was cultivated as described³⁾. Monensins A and B were extracted from the methanolic extract of the mycelium into heptane. The methanolic layer was diluted with water (10%) and extracted with CHCl₃. Repeated preparative TLC on Silica gel G in the

systems heptane - ethyl acetate - methanol (50: 40:10 and 25:65:10), using UV detection after spraying with 0.1% ethanolic solution of morin, afforded besides residual 1-Na and 2-Na the pure compounds 3-Na and 4-Na. The compounds were eluted from the scraped silica gel with diethyl ether - methanol (97:3). 3-Na: MP 236~239°C (diethyl ether); $[\alpha]_{10}^{20}$ +73.6° (c 0.0037, MeOH). 4-Na: MP 224~227°C (diethyl ether); $[\alpha]_{10}^{20}$ +88.0° (c 0.0038, MeOH). Rf values in the system heptane - ethyl acetate methanol (5:4:1) are: 1-Na 0.44, 2-Na 0.38, 3-Na 0.25, 4-Na 0.22.

Mass spectrometry (Table 1) suggests that 3-Na is 3-O-demethylmonensin A and 4-Na its lower homologue. The absence of methoxyl is also evident from ¹H and ¹³C NMR spectra that confirm this deduction. Very close $J_{2,3}$ values (Table 2) indicate the same configuration at C-3 as in 1-Na. Chemical shifts of carbons 7~36 are within 0.3 ppm identical with those of parent compounds⁴⁾. The differences observed for $C-2 \sim C-6$ are due to the removal of methoxyl. These compounds represent probably the last step in the biosynthesis of monensins. The amount of 3-Na and 4-Na increases upon addition of inhibitors of methylation. The activity against Bacillus subtilis decreases in order $1-Na>2-Na\gg3-Na>4-Na$. This effect might be ascribed to greater polarity of 3-Na and 4-Na that can hamper their transport through membranes.

THE JOURNAL OF ANTIBIOTICS

Ion type ^b		3-N	a	4- Na			
	m/z	Rel. (%)	Composition	m/z	Rel. (%)	Composition	
М	678	7	C ₃₅ H ₅₉ O ₁₁ Na	664	8	C ₃₄ H ₅₇ O ₁₁ Na	
а	647	72	$C_{34}H_{56}O_{10}Na$	633	48	$C_{33}H_{54}O_{10}Na$	
b	617	33	C34H58O8Na	603	33	$C_{33}H_{56}O_8Na$	
с	561	15	$C_{30}H_{50}O_8Na$	547	19	$C_{29}H_{48}O_8Na$	
d	547	14	$C_{29}H_{48}O_8Na$	533	19	$C_{28}H_{46}O_8Na$	
е	477	35	$C_{25}H_{42}O_7Na$	463	41	$C_{24}H_{40}O_7Na$	
f	463	74	$C_{24}H_{40}O_7Na$	449	88	$C_{23}H_{38}O_7Na$	
g	405	66	$C_{22}H_{38}O_5Na$	391	80	$C_{21}H_{36}O_5Na$	
h	365	14	$C_{18}H_{30}O_6Na$	365	19	$C_{18}H_{30}O_6Na$	
k	321	100	$C_{17}H_{30}O_4Na$	307	100	$C_{16}H_{28}O_4Na$	
l	435	14	$C_{22}H_{36}O_7Na$	421	19	$C_{21}H_{34}O_7Na$	
т	337	14	$C_{16}H_{26}O_6Na$	337	19	$C_{16}H_{26}O_6Na$	
x°	575	38	$C_{31}H_{52}O_8Na$	561	36	$C_{30}H_{50}O_8Na$	

Table 1. Electron impact mass spectra^a.

^a Varian MAT-311 (70 eV, direct inlet at 200°C).

^b Nomenclature of ions see ref 1.

° Ions not reported in ref 1 but analogous ion present in the mass spectrum of sodium monensin A^{5} . Rel.: Relative intensity.

Proton -		1-Na ^a			3-Na ^b			4-Na ^b		
	δ	Mult.	Couplings (Hz)	δ	Mult.	Couplings (Hz)	δ	Mult.	Couplings (Hz)	
2	2.530	dq	10.3, 6.7	2.502	dq	10.0, 7.0	2.503	dq	10.0, 7.0	
3	3.819	dđ	10.3, 1.6	3.701	dd	10.0, 1.6	3.700	dd	9.5, 1.7	
5	4.035	dd	11.5, 1.9	3.810	mt		3.803	mt		
7	3.890	ddd	2.3, 3.6, 2	3.881	mt		3.883	mt		
13	3.543	mt	$\Sigma J = 15.3$	3.531	mt	$\Sigma J = 16.3$	3.563	mt	$\Sigma J = 15.5$	
17	3.974	d	3.4	3.940	d	3.5	3.930	d	3.3	
20	4.397	ddd	4.1, 7, 9.8	4.393	ddd	4, 7, 9.7	4.402	ddd	4, 7.3, 9.0	
21	3.828	dd	4.1, 9.5	3.810	mt		3.803	mt		
26A	3.980	d	11.9	3.979	d	11.8	4.002	d	12.0	
26B	3.297	d	11.9	3.297	d	11.8	3.304	d	12.0	
27	0.805	d	5.6	0.805	d	5.9	0.812	d	5.8	
28	0.850	d	5.9	0.852	d	6.2	0.856	d	6.0	
29	0.937	d	7.1	0.892	d	6.6	0.888	đ	7.0	
30	0.937	t	7.6	0.938	t	7.3	1.174	s		
32	1.509	s		1.506	s		1.488	s		
33	0.896	d	6.9	0.884	d	7.1	0.879	đ	7.0	
34	1.179	d	6.9	1.136	d	6.5	1.191	d	7.0	
36	1.239	d	6.7	1.183	d	7.0	1.243	d	6.6	

Table 2. Signals of distinct protons in the ¹H NMR spectra of compounds 1-Na, 3-Na and 4-Na.

^a ref 6.

^b Varian XL-200, 200 MHz, CDCl₃, internal TMS, 25°C.

Mult.: Multiplicity.

Carbon	1-Naª	3- Na	2-Na ^a	4-Na	⊿1 ^p	Δ_2°		
1	181.4	181.0	181.3	181.1	-0.4	-0.2		
2	45.1	45.5	45.0	45.5	+0.4	+0.5		
3	83.2	73.8	83.0	73.6	-9.4	-9.4		
4	37.6	42.1	37.5	42.2	+4.5	+4.7		
5	68.5	67.8	68.3	67.8	-0.7	-0.5		
6	34.9	35.7	34.9	35.7	+0.8	+0.8		

Table 3. Comparison of selected ¹³C chemical shifts of compounds 1-Na, 2-Na, 3-Na and 4-Na.

Our data: Jeol FX-60, 15.036 MHz, CDCl₃, internal TMS standard, 25°C.

^a ref 4.

^b $\Delta_1 = \delta(3-Na) - \delta(1-Na).$

^c $\Delta_2 = \delta(4-Na) - \delta(2-Na).$

References

- DONOHO, A. L.; J. MANTHEY, J. OCCOLOWITZ & L. ZORNES: Metabolism of monensin in the steer and rat. J. Agric. Food Chem. 26: 1090~ 1095, 1978
- HANEY, M. E., Jr. & M. M. HOEHN: Monensin, a new biologically active compound. I. Discovery and isolation. Antimicrob. Agents Chemother. -1967: 349~352, 1968
- POSPÍŠIL, S.; P. SEDMERA, V. KRUMPHANZL & Z. VANĚK: Biosynthesis of monensins A and B: the role of isoleucine. Folia Microbiol. 31: 8~14, 1986
- 4) CLARK, R. D.; G. L. HEDDEN, A. F. KLUGE, M. L. MADDOX, H. R. SPIRES & P. F. LONG: Enhancement of the activity of the antibiotic laidlomycin by acylation and the ¹³C NMR spectra of laidlomycin and its esters. J. Antibiotics 35: 1527~1537, 1982
- CHAMBERLIN, J. W. & A. AGTARAP: Observations on the mass spectrometry of monensin and related compounds. Org. Mass Spectrosc. 3: 271~285, 1970
- ANTEUNIS, M. J. O.: Solution conformation of the antibiotic 3823A (monensin A) sodium salt. Bull. Soc. Chim. Belg. 86: 367~381, 1977